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Abstract. The possibility that population III stars have reionized the Universe at redshifts greater than 6 has recently gained
momentum with WMAP polarization results. Here we analyse the role of early dust produced by these stars and ejected into
the intergalactic medium. We show that this dust, heated by the radiation from the same population III stars, produces a submil-
limetre excess. The electromagnetic spectrum of this excess could account for a significant fraction of the FIRAS (Far Infrared
Absolute Spectrophotometer) cosmic far infrared background above 700 micron. This spectrum, a primary anisotropy (∆T)
spectrum times theν2 dust emissivity law, peaking in the submillimetre domain around 750 micron, is generic and does not
depend on other detailed dust properties. Arcminute–scale anisotropies, coming from inhomogeneities in this early dust, could
be detected by future submillimetre experiments such as Planck HFI.
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1. Introduction

More accurate measurements of the cosmic microwave back-
ground (CMB) implies a need for a better understanding of
the different foregrounds. We study the impact of dust in the
very early universe 5< z < 15. WMAP data on the CMB po-
larization,Kogut et al.(2003) provides a strong evidence for
a rather large Thomson opacity during the reionization of the
Universe:τe = 0.17±0.04 (68%C.L.). Although the mechanism
of producing such an opacity is not fully understood,Cen, R.
(2002, 2003) has shown that early, massive population–III (Pop
III) stars could ionize the Universe within 5< z < 15 (see
Fig. 1 and Fig.2). Adopting this hypothesis, we discuss the
role and observability of the dust that is produced by the Pop
III stars. As we can only conjecture about the physical prop-
erties and the abundance of this early dust, we adopt a simple
dust grain model with parameters deduced from the Milky Way
situation. The dust production is simply linked to the ionizing
photon production by the stars through their thermal nuclear re-
actions. The low potential well of the small pre-galactic halos
allows the ejected dust to be widely spread in the intergalactic
medium. The ionizing and visible photons from the same Pop
III stars heat this dust. There are no direct measurements of
this dust, but by means of other results the amount of dust can
be estimated. A similar study has been done for a later epoch
of the universe, in which data are more readily available,Pei
et al. (1999). We use a cosmology withΩtot = Ωm + ΩΛ = 1,
whereΩm = Ωb + ΩDM = 0.133/h2, Ωb = 0.0226/h2 and
h = 0.72 as advocated by WMAP,Spergel et al.(2003), us-
ing WMAP data in combination with large scale structure ob-
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Fig. 1.Total number of ionizing photons produced from Pop III
stars per baryon, cf. (Cen, R.2002, figure 14). The dotted line
represents a simplified model with a constant photon produc-
tion, from z = 16, of 8 per unitz per baryon. The results are
similar.

servations (2dFGRS+ Lyman α). Furthermore, sincez � 1
the universe is matter-dominated. We relate all cosmological
parameters to their measurement today so that they have their
present-day values throughout our calculations.

We now proceed to compute the abundance and the tem-
perature of this dust. Consequences on the CMB distortions are
then to be discussed.
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Fig. 2. Production rate of ionizing photons from Pop III stars
per baryon,dnγ

dz /nb. The odd form between each integerz is not
physical but are due to the fact that the redshiftz is a nonlinear
function of time.

2. Dust Model

Here we assume the dust properties to be similar to what is
observed in our galaxy. For simplicity, we suppose spherical
dust grains with radiusa = 0.1µm and densityρg = 2.3 · 103

kg/m3.The absorption cross section,σν, between photons and
dust can be written as

σν = Qνπa
2, (1)

where we parametrize the frequency dependency as

Qν =

 Q0
a
ar

(
ν
νr

)βν
submm and infra red (IR),

1 visible and ultra violet (UV),
(2)

whereνr ,ar andQ0 are normalization constants. There is only
one independent constant which means that we can fixar =

0.1µm. In (Desert et al.1990, figure 3) the poorly known knee
wavelength,λr = c/νr was set to 100µm. Here, we choose
40 µm for simplicity, so that early dust radiates mostly in the
ν2 emissivity regime. Above the characteristic frequencyνr the
spectral indexβ = 1, belowβ = 2. The exact position ofνr
is not very important for our study because it is mainly above
the interesting wave-length region∼ 0.3− 3 mm and it will not
change the magnitude of the signal.

In the submm and far IR range, the spectral index is con-
stant, and withQ0 = 0.0088 the assumed opacity agrees well
with measurements by FIRAS on cirrus clouds in our galaxy,
cf. Boulanger et al.(1996); Fixsen et al.(1998); Lagache et al.
(1999). In the visible and UV region, the cross section is inde-
pendent of the frequency becauseλ < 2πa. In the submm re-
gion, the cross section is proportional to the mass of the grain.

In order to evaluate the significance of the dust during the
reionization, we calculate the amount of dust present in the
universe at a given time. The co-moving relative dust density
is Ωd,0 = ρd(z)/((1 + z)3ρc), whereρd(z) is the dust density,

z is the red-shift,ρc =
3H2

0
8πG is the critical density (H0 andG

are Hubble’s and Newton’s constants, respectively). The co-
moving relative dust density as measured today evolves as:

dΩd,0

dz
= J+ − J−, (3)

where J+ and J− are the production and the destruction rate
respectively.

The Pop III stars produce enough photons for the reioniza-
tion while burningH and thus forming metals (Li and higher).
These metals are released in supernovae explosions at the end
of the stars short lives (∼ 1 Myr), whereafter they clump to-
gether to form dust,Nozawa et al.(2003). Knowing the pro-
duction rate of ionizing photons to bednγ

dz /nb (Fig. 2), we can
calculate the total photon energy released from the Pop III stars.
This can be done by supposing that each photon has an effec-
tive energy ofEγ = cγ

∫ ∞
νion

dν hνBν(T∗)/
∫ ∞
νion

dν Bν(T∗), where
hνion = 13.6 eV andBν(T∗) is the spectrum of a star with tem-
peratureT∗. The energy of the non-ionizing photons is included
throughcγ = utot/uν>νion (u is the energy from the star). A Pop
III star hasT∗ ∼ 80 000 K (Shioya et al.2002, page 9) which
givesEγ ≈ 36 eV. Note that for other reasonable star temper-
atures,Eγ does not vary significantly,Eγ|60×103K ≈ 36 eV and
Eγ|100×103K ≈ 40 eV. Hence, the total Pop III photon energy

production isEγ
dnγ
dz /nb per baryon per unitz. For each con-

sumed nucleon, we assume that a nuclear energy ofEr = 7
MeV is released as radiation, which means that the nucleon
consumption rate isEγEr

dnγ
dz /nb nucleons per baryon per unitz. If

fd is the fraction of the consumed baryon mass that becomes
interstellar dust, (some of the metal atoms will remain with the
core after the SN explosion, some will stay in the close vicinity
of the SN and some will never clump together to form dust) the
co-moving dust production rate will be

J+ = fd
Eγ
Er
Ωb

dnγ
dz
/nb. (4)

A dust grain will eventually be destroyed, e.g. by colli-
sion, by supernova shockwaves or by cosmic rays, seeDraine
& Salpeter(1979) for further discussion. If a dust grain has a
lifetime of∆t we can write the dust destruction rate as

J− =
Ωd,0(z)
∆t

dt
dz
≈ −

Ωd,0(z)

∆tH0Ω
1/2
m (1+ z)5/2

, (5)

whereΩm is the relative matter content today, because the uni-
verse is matter dominated for 5< z< 15.

Solving Eq.3 gives the dust density evolution

Ωd,0(z) =
∫ zi

z
J+(z

′)
Y(z′)
Y(z)

dz′, (6)

wherezi = 20 is the beginning of the dust formation (see Fig.1)
and

Y(z) = exp

(
2
3

(1+ z)−3/2

Ω
1/2
m ∆tH0

)
. (7)

We note that the source termJ+ is modulated by the destruction
term Y(z′)

Y(z) . The dust density is plotted in Fig.3 where we note
a strong dependency on the dust lifetime. In local dust∆t ∼
100 Myr, Draine & Salpeter(1979). However, the uncertainty
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Fig. 3. The co-moving relative dust density evolutionΩd,0 =

ρdust/ρc, for fd = 1. The minima atz = 6 and 9 for∆t ≤ 0.1
Gyr is due to the fact that∆z= 1 is not a constant time interval.

is rather large, according toDraine(1990), ∆t = 30 Myr – 10
Gyr, depending on the environment. Note, however, that the
density at the reionization red-shifts is much lower than in the
interstellar medium in the Milky Way which implies a rather
long dust life-time.

3. Results and Discussion

3.1. Metallicity

If we suppose that most of the metals were ejected as dust (not
as gas) the metallicity comes from the dust grains. The metal-
licity is directly obtained through the produced dust. By letting
∆t → ∞ (∆t = 10 Gyr is good enough) we find the metallicity:

Z
Z�
=
Ωd,0(∆t → ∞)

0.02 ·Ωb
≈ 1147·Ωd,0(∆t → ∞) (8)

or in absolute termsZ ≈ 22.9Ωd,0. At z = 5 we haveΩd,0 =

2.3 · 10−5 fd, which givesZ ≈ 5.2 · 10−4 fd = 0.026fd Z�.
There are not much metallicity data available forz > 5.

Metal poor stars in our galaxy are one point of reference, ab-
sorption lines in the Lyα spectrum from quasars are another
one. The lowest metallicities found in stars in the Milky Way
areZ/Z� ∼ 0.01, Depagne et al.(2002). The Lyα forest sug-
gests (Songaila & Cowie2002, figure 13) thatZ/Z� ∼ 0.003
for z ∼ 4.5 assuming that [Fe/H] ≈ log(Z/Z�) as suggested
by (VandenBerg et al.2000, page 432). This indicates that
fd ∼ 0.1. However, this might be lower than the actual value,
cf. (Pettini et al.1997, figure 4).

In heavy stars, virtually all the helium is consumed, produc-
ing metals. For simplicity (and lack of data), we assume that all
the ejected metals clump to form dust,fd ≈ fe ject. This means
that fd will almost entirely depend on the dust ejection rate in
the supernova explosion. InIwamoto et al.(1998) a detected
hypernova of massM ∼ 14M� seems to havefe ject & 0.7.
Furthermore, according to a dust production model byNozawa
et al. (2003), fd ≈ 0.2 − 0.3. At the same time, some of the

stars will become black holes, not ejecting any metals,Heger
& Woosley (2002), decreasingfd. Currently this decrease is
largely unknown.

In summary, the mass fraction of the produced metals in the
Pop III stars, having become interstellar dust, should be around
fd ∼ 0.1 − 0.3. In the following we use the more conserva-
tive fd = 0.1, in agreement with the Lyα forest measurements,
unless otherwise stated.

3.2. Dust Opacity

With our model for the dust density evolution, we want to cal-
culate the opacity of the dust, as seen by the CMB. This will
tell us how much the CMB spectrum is altered by the passage
through the dust.

The dust opacity is given by

τν = c
∫

dz
dt
dz
σνend(z) (9)

=
Q0c

√
Ωmar H0

3
4
ρc

ρg

∫
dz

(
ν

νr

)βνe
Ωd,0(z)(1+ z)1/2+βνe , (10)

where ν (νe) is the observed (emitted) frequency andν =
νe/(1 + z). The dust number density isnd(z) = (1 + z)3 ×

ρcΩd,0(z)/mg wheremg =
4πa3

3 ρg is the grain mass. We see
(from τ ∝ Ωd,0) thatτ is proportional to the parameterfd.

The resulting opacity can be seen in Fig.4. We note that
the opacity is small,τ � 1. The smooth knee is due to the
change ofβ at the redshiftedνr , see Sect.2, but this is not in
the spectral range of the CMB. The differential opacitydτ/dz
is plotted in Fig.5 for λ = 1 mm. We see that with a short dust
lifetime, the dust differential opacity falls off almost immedi-
ately (in terms ofz). However, for longer lifetimes, the early
dust could still play a certain role forz< 3. This could eventu-
ally contribute to dimming of distant objects. We also note the
impact of the expansion of the universe in decreasing the dust
density and thus the opacity. This is why the increase in Fig.1,
at z ∼ 5, is not apparent in the opacity, Fig.4. Furthermore,
the submillimetre effective dust opacity follows aν2 emissivity
law.

3.3. Dust Temperature

In order to deduce the equilibrium temperature of the dust, we
write the balance between the absorbed CMB, the absorbed
starlight and the emitted IR light from the dust:

Pd = P∗ + PCMB. (11)

The powersPd andPCMB can be written as

PX = 4π
∫ ∞

0
dνeσνeBνe(TX), (12)

whereBν is a Planck blackbody spectrum andX = {CMB,d}.
In the wave-length range considered, the spectral indexβ = 2.
Supposing thatβ is constant, eq.11 can be solved for the dust
temperature analytically in the submm range:

T4+β
d = T4+β

∗e f f + T4+β
CMB, (13)



4 Erik Elfgren and François-Xavier D́esert: Dust from Reionization

0.1 1 10
λ [mm]

10
-5

10
-4

10
-3

10
-2

τ

∆t = 10 Gyr
∆t = 1 Gyr
∆t = 0.1 Gyr

Fig. 4.Opacityτ with dust evolution taken into account.
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Fig. 5.The differential opacitydτ/dzatλ = 1 mm for different
dust lifetimes.

where the effective temperature is defined by

T4+β
∗e f f =

P∗

8π2hc−2(Q0 · (a3/ar )ν
−β
r )(kB/h)4+βCβ

(14)

andCβ =
∫ ∞

0
dxx3+β/(ex − 1) = (β + 3)!

∑∞
k=1 k−(4+β), such that

C0 ≈ 6.494,C1 ≈ 24.89 andC2 ≈ 122.1.
However, in our calculations we use the exact eq.11 and

12, while eq.14can be used as a cross-check.
The absorbed power density,P∗ from the radiation of Pop

III stars peaks in the UV-region and can be approximated by

P∗ = σUVu∗(z)c, (15)

whereσUV is the dust-photon cross section in the UV region
and the energy density is

u∗(z) = fesc

∫ z

zi

dz′
dnγ
dz′

Eγ

(
1+ z
1+ z′

)4

, (16)

where fesc is the escape fraction of photons from the star halos.
We neglect the loss of photons due to the reionization itself.
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Fig. 6.Energy density of ionizing photons compared touCMB =

4σST4
CMB/c, whereσS is Stefan-Boltzmann’s constant.
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Fig. 7. The dust temperature is plotted against the CMB tem-
perature with the relative quatity (Td − TCMB)/TCMB.

Eγ 1+z
1+z′ is the effective energy of the photon emitted atz′ and

then redshifted toz. According toCen, R.(2003), fesc = 0.3
gives an electron opacityτe ≈ 0.13 which is within one stan-
dard deviation of the results by WMAP. Hereafter, we adopt
this value offesc.

The energy density of the ionizing photons are compared to
the CMB in Fig.6. The star energy density is much less than
the CMB energy density at this epoch, and the curve resembles
the accumulated photons in Fig.1. Hence, the dust temperature
closely follows the CMB temperature, see Fig.7 and Eq.12.

3.4. Observed Intensity

Now we proceed to compute the average intensity (monopole
term) of the submm and microwave background which is made
of the CMB and early dust emission. The simple radiative
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Fig. 8. Comparison of the modeled intensity for the early dust
emission in excess of the CMB with the observed FIRAS spec-
trum (dashed red curve) of the cosmic far IR background as
detailed byLagache et al.(1999).

transfer of the CMB through the uniform dust screen yields
the following observed intensity:

iν = e−τν
[
Bν(TCMB) +

∫ τν

0
eτe

Bνe(Td(z))

(1+ z)3
dτe

]
. (17)

From Fig.4 and7, we see that the opacity is small, (τ � 1)
and the dust temperature is only slightly higher than the CMB
temperature (Td & TCMB). This gives the following formula for
the excess intensity relative to the unperturbed CMB:

∆iν ≡ iν − Bν(TCMB)

≈ TCMB
dBν
dT

∣∣∣∣∣
T=TCMB

∫ τν

0

Td(z) − TCMB(z)
TCMB(z)

dτe, (18)

whereTCMB is the CMB temperature today. The integrant is
plotted in Fig.7. We note that a new component is added to
the primary CMB spectrum. Eq.18tells us that it has a specific
spectrum which is the product of a 2.725 K blackbody tem-
perature fluctuation spectrum (like primary anisotropies) and
a ν2 power law (fromdτe). This effect is mostly visible in the
submm range and has a minor contribution in the radio domain.

In Fig.8, the excess intensity is plotted along with the extra-
galactic background measured by FIRAS,Puget et al.(1996);
Fixsen et al.(1998); Lagache et al.(1999). Depending on the
dust destruction rate (parametrized by the dust lifetime∆t), the
computed early dust background can be an important part of
the observed background from 400µm up to the mm wave-
length. The exact position ofλr will only slightly displace the
spectrum, leaving the magnitude unchanged. Most of the far IR
background can now be explained by a population ofz = 0 to
z = 3 luminous IR galaxies,Gispert et al.(2000). A fraction
of the submillimetre part of this background could arise from
larger redshift dust emission as suggested by Fig.8.

In order to check our results, we calculate the co-moving lu-
minosity density of the dust in the submm region and compare
it with (Gispert et al.2000, figure 4). We find them compatible.

3.5. Discussion

Just like the Thomson scattering during reionization, early
dust will also tend to erase the primordial anisotropies in the
CMB. However, due to the much smaller dust opacity (compare
τd(1mm) . 10−3 andτe = 0.17), this effect will be negligible.

The early dust will also introduce a new type of secondary
anisotropies with a typical size of a dark matter filament. Here,
we only estimate the order of magnitude of this effect. If the co-
moving size of the dark matter filament isL, the angular size is
3 · (L/5 Mpc) arcminutes atz = 10 which corresponds to mul-
tipole number̀ ∼ 4000· (L/5 Mpc). Fortunately, this region in
`-space does not contain any primordial fluctuations because
of the Silk damping. However, there are other foregrounds in
the same region, seeAghanim et al.(2000). If we suppose a
contrast of 10% in the dust intensity between dark matter fila-
ments and the void, we obtain values of∆T/T ≈ 3× 10−7 (for
λ = 1 mm, fd = 0.1 and∆t = 1 Gyr). These anisotropies,
pending more accurate calculations, clearly are in the range
of expected arcminute secondary anisotropies from other ef-
fects. They could be detected by Planck HFI (High Frequency
Instrument),Lamarre et al.(2003) and FIRAS–II type of in-
strument,Fixsen & Mather(2002).

The results of these calculations depend only very weakly
on the precise dust model assumptions. We have also tried a
different (but similar) shape of the ionizing photon production,
Fig. 1, and found that the results do not vary significantly.

Very little is known about the universe during the reion-
ization epoch. Nevertheless, there are several parameters that
could be calculated more accurately.

The two most important parameters in the present model
are the dust lifetime,∆t and the mass fraction of the produced
metals that are ejected as interstellar dust,fd. The dust life-
time could be determined more precisely by making 3D sim-
ulations of the dust production in combination with structure
formation. The simulations would also give the inhomogeneous
dust density evolution. The result would be a better estimate of
the aforementioned secondary anisotropies caused by the vari-
ations in the dust opacity. A more refined dust grain model,
using e.g. a distribution of grain sizes would also be more real-
istic. If the dust is long-lived, it could also have a certain impact
on measurements in the optical and UV region. Finally, we note
that most of the results are proportional to the dust density and
thus to fd. To evaluatefd more precisely, we need a better un-
derstanding of the typical properties of the first generation of
stars, see section3.1, which is currently much debated.

4. Conclusions

We have shown that the radiation from early dust, produced and
heated by Pop III stars, contributes to the extragalactic submil-
limetre background within the limits set by FIRAS. It may not
be detected by the present generation of instruments but fu-
ture experiments such as Planck HFI and FIRAS-II should be
able to measure it, by using its specific predicted spectral signa-
ture. This high–redshift dust, contemporary to the reionization,
should show up as small–scale anisotropies when observed by
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sensitive submillimetre instruments. These anisotropies are in
the same range as other small–scale anisotropy effects.
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