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Abstract

A review is given on the Density Functional Theory (DFT) along with its ap-
plications on silicon and carbon, materials important for the semiconductors.
Some related concepts, like exchange-correlation energy are also explained
briefly. The Density Functional Theory is compared to its predecessors as
well as to the Hartree-Fock theory. Furthermore, the characteristics of sil-
icon and carbon are discussed - the possible structures and symmetries as
well as their physical properties. This study is made as a preparation for
making a thorough investigation of silicon carbide, which is very interest-
ing for extreme environments. A theoretical section on group theory is also
included for the sake of completeness. Finally, the implementation of DFT
calculations is treated and some practical calculations are presented. For
silicon and carbon structure optimizations are made and the energy levels
are calculated. With DFT, the structure is calculated for the diamond struc-
ture. First as a normal lattice, then with an interstitial or a vacancy.

Keywords: Density Functional Theory, Group Theory, Semiconductors,
Silicon, Carbon
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Chapter 1

Modeling Defects in
Semiconductors

1.1 Semiconductors

In todays society semiconducting materials play an extremely important role
in making tools and gadgets that are used daily, such as personal computers,
mobile telephones and so on. As the use of semiconductors in electronics is
totally based on defects in the materials it becomes crucial to understand
the behavior of these defects at a microscopic level to make further progress
in this area. The defects can be of beneficial as well as destructive character.
In the production of semiconding components a lot of defects are introduced
in the material. Some of these defects are wanted but there are also a lot of
interfering defects. Often, defects are introduced purposely in semiconduc-
tors to change e.g. the conduction properties. This process is called doping
and the wanted defects are interstitial atoms and vacancies. In contrast, the
unwanted defects can also be of different character such as line defects or
piling defects.

The most widely used semiconducting material is silicon (Si). Silicon
does not always have the best properties for applications, but it is very
easy to manufactor. Its ability to reduce defect concentration (by heating
the structure to make it relax and then let it cool down) is very efficient.
However, in tough environments this very property is also its weakness. In
these cases other semicondutors, such as silicon carbide and gallium nitride,
might be the only solution. These materials are much more resistant and
therefore better suited for most applications. However, they are also very
difficult to dope, which makes them very hard to manufacture and therefore
they are only used when really needed. Due to their excellent properties
one hope to be able to control the defects better in these materials in order
to profit more widely from their benefits. For example, electronics could be
made to work at higher frequencies, thereby increasing their efficiency, due
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to the high thermal resistance of these kinds of materials.

The aim of semiconductor physics is to gain control over the defects in
the material, thereby controlling its properties. This is desirable to exploit
the good effects as well as to negate unwanted defects.

1.2 Modeling of Semiconductors

To be able to study defects in semiconducting materials, as in all scientific
research areas, a mathematical model is needed. This both to interpret ex-
perimental results as well as to predict phenomena not yet discovered. A
mathematical model can, after proper verification, also be used to predict
properties that are without reach of experimental detectors. The most accu-
rate model for microscopic physics is undoubtly quantum physics. However,
for larger systems the exact quantum mechanical treatment is by far too
complicated to be solved even with numerical methods, even less then an-
alytically. Different approaches are available to solve this kind of problem.
One possibility is to make physical approximations, supported by experi-
mental results. Another is to make a cunning physical model so that ex-
perimental data can be dispensed of. Clearly, this is particularly desirable
in cases where experimental data are hard to obtain. It might be possible
to find another, equivalent but simpler, representation of the system. Such
a model is called ab initio (latin for ”from the beginning”). This is nec-
essary for having a physically satisfying model and crucial for areas where
experiments cannot be performed.

To completely describe the system with quantum mechanics is virtually
impossible, and will certainly remain that way. The exact Schrodinger equa-
tion would contain roughly 10%*® terms and about 10?* variables for a typical
crystal. Hence, approximations are indispensable. Below is a description of
the two main ab initio models.

The traditionally employed method is the so called Hartree-Fock model.
This model describes the system as a combination of anti-symmetrical one-
electron wave-functions. Thus for a real crystal, the equations to be solved
is still a function of about 10?4 variables. This obliges us to limit the cal-
culations to a very tiny fraction of the crystal (at most about a hundred
atoms) repeated with periodical boundary-conditions throughout the crys-
tal. Obviously, this affects the result of defect calculations, as the defects
are also repeated. Even with this, the number of variables is high, at least
in the order of 4N, where N is the number of electron used to describe the
system (normally the valence electrons). In this region, the equation can
be solved iteratively, but in most cases important physical properties are
lost. Hartree-Fock theory is widely used in the chemistry community but to
make this theory accurate enough, perturbation theory, and such, must be
employed which makes larger calculations practically unfeasable with todays
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computational systems.

In the sixties, a new model for multi-particle quantum systems was de-
veloped, called Density Functional Theory (DFT). In this model the electron
density was proved to be an equivalent representation for the ground-state
system. This astounding breakthrough made it possible to completely de-
scribe the system with merely the three space-coordinates. In order not to
have too many terms in the Schrodinger equation, we still need to limit the
system in size. However, the limit is much higher than for Hartree-Fock; we
can use about a thousand atoms within reasonable computational power.
The DFT also opens up the possibility to make calculations locally in the
crystal, so that periodicity is not longer required, thus improving the defect
modeling. The original theory, making way for modern DFT, was devel-
oped mainly by Walter Kohn, Pierre Hohenberg and Lu J. Sham in the
1960’s. The quantum mechanical description with DFT was rewarded with
the Nobel Prize in chemistry to Walter Kohn in 1998.

Another crucial tool for making calculations of systems of relevant size
is group theory. In the case of semiconductors, group theory treats sym-
metrical properties of the system and thereby simplifies the problem a lot
without any approximations. Crystal structures, like most semiconducting
materials, are highly symmetrical and thus, group theory is a very power-
ful tool in this context. The symmetries can for example be used to find
suitable boundary conditions.

1.3 Our Work

Our aim has been to make an initial study preparing for structural cal-
culations of Silicon Carbide. To be able to understand and interpret the
behavior of Silicon Carbide, a thorough understanding of the constituents
is needed. Hence, we began with calculations for Silicon and Carbon, sep-
arately. In these cases, we studied interstitial atoms as well as vacancies
and how these defects change the structure and ground-state energies of the
materials. These are the kind of defects previously mentioned to be of such
importance for doping of semiconductors.

Density Functional Theory (DFT) was applied as the instrument for
calculating these structures due to its ability to make accurate calculations
in a reasonable amount of time. It would have been possible to employ other
methods, as Hartree-Fock, but the calculations would have taken much more
time. Hartree-Fock calculations provide more information on the system
(like excited states), but we were primarily interested in the ground-state
configuration and energy. For theses purposes, DFT is an excellent method.

The calculations were made with a program AIMPRO, Ab initio mod-
eling program, developed for DFT calculations on atomic systems. The
program was run in parallel on supercomputers at LTU, UmU and KTH.
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To understand this extremely complex problem and its physical descrip-
tion we start, in chapter one, with some relevant notions in quantum physics.
From there we proceed to the theoretical description of Density Functional
Theory. In chapter two, we continue with an introduction to group theory
and its applications in crystalline materials. In chapter three we explain
some properties of semiconductors in general and silicon (Si), carbon (C)
and silicon carbide (SiC) in particular. Further, in chapter four we present
our calculations and results regarding the behavior of vacancies and inter-
stitials in silicon and carbon. Finally, chapter five contains a summary of
our work and some conclusions about the different semiconducting materials
treated.

1.4 Acknowledgments

We are greatly indebted to our supervisor, Sven Oberg! for his untiring
interest and support. In particular, his assistance with the calculations in
the final stage of the project has been of great value. We also express our
gratitude to High Performance Computing Center North, (HPC2N) 2 | and
the department of computer added design at LTU for allowing us to use
their computational capacity.

'Department of Mathematics
LuleaUniversity of Technology
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Chapter 2

Density Functional Theory

To be able to see more clearly what a huge impact the Density Functional
Theory (DFT) has, some quantum mechanics is briefly treated followed by
a primitive predecessor to DFT, the Thomas-Fermi model. The chapter
culminates in the very method of DFT in section 2.3.

2.1 Basics in Quantum Mechanics

2.1.1 The Schrodinger Equation

In order to understand the full width of the problem of calculating the struc-
ture and properties of a crystal the complete Schrédinger equation will be
presented in this section. In the following section, the Born-Oppenheimer
approximation is discussed which makes the problem a lot easier, but still
far beyond our grasp. The solution is postponed until it can be discussed
more though roughly in sections 2.2 and 2.3. Further, the variational princi-
ple is stated (rather mathematically), and the definition of electron density
in a multiparticle system is given. Finally, some notions (exchange and cor-
relation energy) connected to the most common and reasonable methods for
solving the Schrédinger equation are treated in sections 2.1.5 and 2.1.6.

The time independent Schrédinger equation for N spinless electrons with
N, ions (with charge Z,) is

HTot\IjTot = ETDt\IJTOta (21)
where Er,; is the total energy of the system and the wave-function
U = \I/(Fl,FQ,... ,FN,Sl,SQ,. . .,SN,El,ﬁg,.. . ,ﬁNa,Sl,SQ,...,SNa)

gives all information there is to know about the system. Here the 7}, s; de-
notes the position and spin, respectively of electron ¢ and ]:fi, S; the position
and spin, respectively of atom 4. Effectively, the wave equation depends
on 4N + 4N, variables. For a typical system, N, ~ N4 = 6.022 - 10?3,
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Avogadro’s number, and N ~ 10N, giving a total number of variables in
the order of 10%*. Obviously, solving a differential equation with that many
variables is impossible.

The Hamiltonian for this system has the form

[:[Tot = Te + ﬂ + ‘A/ee + ‘A/ie + ‘711 (22)

In order not to be encumbered by undesirable units we work in atomic
units where i = e = m, = 4meg = 1. This gives the total electronic kinetic
energy

N
T.=> ( —7v2 (2.3)
7j=1
the total ionic kinetic energy
No
T = Z(_§vi)7 (24)
a=1

N N,
Zo
— 2.
=22 (2.5)
j [0
and the electron-electron interaction energy

Vee =Y 157 (2.6)

and the ion-ion interaction energy

Van = Z Za Zﬂ- (27)

a<fB

Once again, with normal values of N and N,, the Hamiltonian operator
achieves quite frightening proportions. Only the electron-electron interac-
tion energy contains in the order of (10?4)2 = 10*® terms. The Schrédinger
equation to be solved is therefore of the form

Z U(10**variables) = 0.

1048operators

Impossible to solve, indeed!
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2.1.2 The Born-Oppenheimer Approximation

In the system, the electrons move very fast in comparison with the ions, due
to their mass (Mion ~ 104me). Thus we can approximate that the electrons
can configure themselves as if the ions were fixed. The ions make a (positive)
background, not effecting the states of the electrons except as a potential.
Conversely, the ions don’t depend on the fast moving electrons!. This is
called the Born-Oppenheimer approximation. The electrons are (partly)
decoupled from the ions which means that the wave function can be written

as:
Vrotal (¥, X) = x(X)¥(Z, X), (2.8)

where the xy and ¥ describes, respectively, the ionic and the electronic part
of the wave-function and X = (Ff, S), and & = (7, s) are the spatial and the
spin coordinates, respectively of the ions and the electrons. As the Born
Oppenhemier approximation is fairly close’to the reality it will be used
henceforth.

The Born-Oppenheimer approximation gives the new Schrédinger equa-
tion (for the electrons):

A H}I/ :AE\IJ, A (2.9)
H= Te + Vvee + V%ea

with 7%, V.. and Vj. defined as in section 2.1.1. The energy found, F, depends
on the ion-potential, which is a function of (ﬁl, R, ... ,RN& , 51,52, ...,5N,)-
Hence, the electron energy is also a function of these variables. When we
want to find out the total energy of the system we must, of course, also in-
clude the ionic part. The Born-Oppenheimer approximation is semi-classical
as the electron energy is introduced as a potential energy when solving the
ionic system. In other words, the electron - ion interaction is made classi-
cally, though their structures each for themselves are calculated quantum
mechanically.

However, even with this approximation the problem of solving the elec-
tron wave-function is impossible. We now have only one type of particles,
which is a progress indeed, but the number of variables is only decreased
marginally and so is the number of terms of the Schrodinger equation. Solv-
ing this without further approximation is impossible, but before attempting
this, a few more definitions in quantum mechanics is needed.

!Obviously, the ions do depend on the electron structure, but the electron structure
will already have found it’s equilibrium, and hence, does only depend on the ions. So,
finally, the ion positions only depend on the other ions’ positions.

2In fact, the approximation is only valid for non-degenerate ground states, when the
phonon-electron coupling is weak.
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2.1.3 Variational Principle

For a state ¥, which may or may not satisfy the Schrodinger equation (2.2)
(or (2.9)), the expectation value of the energy operator is

(V|2

B = "y

(2.10)

The ground-state energy, Ej is obviously the minimum of E[¥] with respect
to W:
Ey = m\I}nE[‘lf] = E[y). (2.11)

The variational principle states that the wave-function is stable in its ground
state:
JE[Yy] = 0. (2.12)

This ¥q is the ground-state and thus it satisfies the Schrodinger equation
(2.2) (or (2.9)). N.B. that equation (2.12) can also be satisfied for local
minima (or maxima) of the energy with respect to the wave-function. Thus,
if the condition is satisfied, it is still possible that we’ve only found a meta-
stable position.

2.1.4 Electron Density

The electron density p(7) is a function of the three space variable 7 = (z,y, 2)
which is normalized so that the integral equals the number electrons:

/ p(F)dF = N. (2.13)

The electron density in itself is given by the solution of the Schrodinger
equation (2.9) through

p(F) =N > /.../\Il(a?l,fg,...,:fn)|2dF1dF2...dFN, (2.14)

Allspin

where ¥ = (7,s) are the spatial and the spin coordinates. The electron
density is a key concept in DF'T, though it is not considered through the
wave function above, except for theoretical purpose in order to prove the
validity of the theory. The total wave function is never calculated and the
electron density is an independent object which replaces the wave function.

2.1.5 Exchange Energy

The exchange energy is the effect of the Pauli-principle which tends to re-
duce the probability of electrons to occupy the same point in space. If
the Schrodinger equation (2.9) would be solved exactly, the exchange en-
ergy would be included in the solution. Unfortunately this is not possible
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and we are forced to solve for each electron separately and then introduce
the exchange effect separately. The exchange part wants to make the total
wave-function antisymmetric and is thus non-local.

2.1.6 Correlation Energy

The correlation energy is also stemming from the fact that the Schrodinger
equation (2.9) is not solved exactly. The origin is more intricate than that
of the exchange energy but has to do with the fact that the wave-function
doesn’t want to be wrinkled (because of the second derivative in the kinetic
energy). Quantum mechanically this can be described using a linear com-
bination of Slater determinants® used in e.g. Hartree-Fock theory, but the
number of determinants needed is huge, often millions, making the method
unrealistic. This is called configuration interaction. In Density Functional
Theory, the correlation energy can be naturally included without using mil-
lions of Slater determinants like in Hartree-Fock Theory. The heat capacity
of metals can be accounted for with the correlation energy. Hence, DFT is
generally much better for these kinds of calculations than is Hatree-Fock.
In general the correlation energies are an order of magnitude or more, lesser
than the exchange energies

2.2 The Thomas-Fermi Model

2.2.1 Introduction

Let us now turn to the problem of solving the Schrodinger equation of section
2.1.1, with billions of billions of terms and variables. As we have mentioned
earlier, we must make an ansatz for the solution, limiting the possibilities.
Even though the results of Thomas-Fermi model in themselves aren’t re-
markable, it is the foundation of DFT, and as such deserves some attention.

The idea in the Thomas-Fermi model is to replace the complicated N-
electron wave function U(Z1, Zo,...,ZN) with the charge density p(7) thus
reducing the degrees of freedom from 4N (three spatial- and one spin-
coordinate) to only three spatial coordinates. The transition from the quan-
tum mechanical ¥ to the global variable p can be achieved by using several

3 A Slater determinant is an antisymmetric (as required for the fermions) wave-function

of the form: )

VNI

where 1);(r;) forms an N x N matrix and N is the number of fermions in the system. This
reduces to

U = det 'l,bl (7"]')

1
U= 7 [¥1(r1)2(r2) — 1 (ra)iha(r1)]

in the simple case of two electrons.
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different approaches. The one presented, rather briefly, in this section will
use statistical considerations.
The energy of a particle in a three-dimensional well is

1 1
€=3p (n? —|—n +n?) = @RZ. (2.15)
This gives g(¢), the density of states*, as
d (1 s
g@:&<dhﬁﬁﬁz4wwﬂm (2.16)

with R defined implicitly above. The electrons are fermions and in order
to treat them statistically, we have to employ Fermi-Dirac statistics. The
Fermi-Dirac distribution function is

o) = ——

1 — ele=w)/7
where p is the chemical potential, 7 is the temperature, k; is the Boltzmann
constant, € is the step (also called Heaviside) function and e is the Fermi-
energy. Thus, in the zero temperature limit we have
AN /3
AE—Q/ef(e)g(e)de—Cf (l3) ,

— 0(ep —€), when 7 — 0. (2.17)

(2.18)

where Cy = 13—0(37r2)2/ 3 is a proportionality factor and the 2 comes from the
fact that we have two electrons (with different spin) in each point. This
means that the Thomas-Fermi kinetic energy is expressed in terms of the
electron density as

Trr(p) = Cy [ *(dr (2.19)

where ep has been eliminated by the use of AN = 2 [ f(e)g(e)de and p =
AN/I3.
Finally, the energy-functional that is to be minimized is:

Err(p(7)] = Trrlp) + Vielp] + Veelp] =

Cf/pS/g(F)dT / P gy L // |ﬁp§5| dFdr. (2.20)

This gives the Euler-Lagrange equation (cf. appendix A, section A.3):

—_ —— — D . 1
pre =5 1P . +/ ]F—F’|dr’ (2.21)
where p )

- + 7= 7:,,|d7" o(7) (2.22)

is the (classical) electrostatical potential.

“For further development on the density of states, see for example, Kittel (1996) ?7?.
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2.2.2 Thomas-Fermi-Dirac Model

The difference between the Thomas-Fermi and the Thomas-Fermi-Dirac
(TFD) model is that the TFD model includes the Hartree-Fock exchange-
energy functional:

| S S
Klp] = 4/7“121|P1(7"1,7“2)|2d7“1d7“2, (2.23)

where p1is defined as the exchange energy from Hartree-Fock theory, a (nor-
mally non-local) interaction term between different parts of the electron
density:

() =N [ [uEo o (2.24)
where £ = s1%5 - - - Ty and T; = s;7; are the other variables. We note that

p1(7,7) = p(7) (2.25)

is the normal electron density (cf. equation (2.14) with >_ ;. ,, being in-
cluded in the integral). If we approximate that non-local effects can be
ignored the Dirac exchange energy can be expressed in terms of the electron
density directly”:

Klp) = Cp [ p0ar, (2.26)
where Cp = % (%)1/ % The energy functional thus becomes:
Erpplp] = Erplp] + Kp], (2.27)

with E7p|p] defined as in (2.20).

2.2.3 The Hohenberg-Kohn Theorems
i Let the Hamiltonian of the N-electron system be written on the form:
H=T,+ Ve + Vi, (2.28)

where Vi, may, or may not be the Coulomb potential. Hohenberg
and Kohn (1964) and Kohn and Sham (1965) showed that for every
potential Vj., there is exactly one corresponding electron density:

N
GEDD / 8(F — 7)1 (r)|2dr-. (2.29)
n=1

The electron density gives the number of electrons and determines,
through the V. in the Hamiltonian, the ground state of the wave-
function. In other words there is a one-to-one correspondence between

°For details, see Parr and Yang 1989 [2].
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the electron density and the ground state wave-function. However,
the correspondence is not onto, i.e. not all electron densities can be
represented by a potential®.

ii The second Hohenberg Kohn theorem is that for all electron densities
that can be represented by a potential:

Eolp) = T + Vi + / oAV (P> Elpo]. (2.30)

This is the same as saying that the variational principle applies, which
is crucial for finding a reliable solution to the problem with a mini-
mization procedure.

Fortunately, the variational principle can be shown to hold with a weaker
condition”:

{posor =20, [ perar=n. [reperepar<e} ooy

so that when an electron density is found only these criteria have to be
verified, not that the electron density can be represented by a potential.
For the interested reader, the article by Hohenberg and Kohn (1964) [3] is
recommended.

2.2.4 Conclusions

To solve the functional we apply our physical boundary conditions for neu-
tral atoms,
¢(7) — 0, p(7) — 0, as|] — o0 (2.32)

and the Poisson equation to (2.21).

Neither the Thomas-Fermi, nor the Thomas-Fermi-Dirac functionals give
any remarkable results. One of the problems with the models is that they
give densities that go towards infinity as |#] — 0, i.e. in the vicinity of
atomic nuclei. This can be remedied by the use of higher order correction
terms of gradients of p or by requiring that the electron densities should have
reasonable form®. Another problem is that they don’t give the proper atomic
shell structure. This is because we have assumed that the kinetic energy only
is dependent on the electron density and not the gradient of it, as might
be expected from the Schrodinger equation. Hence, the rapidly changing
electron density that forms the shell structure cannot be well represented.

5The electron densities that can be represented as a potential are called v-representable.
"This is called that the electron density is N-representable.
8For example, giving exponentially formed atomic shells.
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2.3 The Kohn-Sham Method

2.3.1 The Kohn-Sham Equations

As stated in the Hohenberg-Kohn Theorem, the Schrédinger equation (2.9)
for the ground state energy can be formulated in terms of the three-variable

p(7) as:

A A

Hdzﬁ@+%wﬁHMMZﬁ@H§Mm+/MﬁWﬁﬁ (2.33)

with the constraint that
/ p(F)dF = N. (2.34)

When this energy is minimized, the electron density satisfies the Euler-
Lagrange equation (cf. appendix A, section A.3):

L, 0Fp]
M—Wﬂ+7§w (2.35)
with 4 determined by the constraint [ p(7)dF = N.

The idea of Kohn and Sham was to collect the terms that were non-local
together, then to solve each electron individually, with an effective potential
formed by the non-local terms. The effective potential is recalculated, and
then the electron density is recalculated which in turn give another effective
potential. The process is repeated until the energy has stabilized on a mini-
mum. The number of variables and equations are enormously decreased with
respect to our original Schrodinger equation (2.9), but definitely higher than
the naive Thomas-Fermi model. In the DFT we still have as many equations
to solve as the number of electrons modeled, hence, to model the entire crys-
tal is unthinkable. Normally, we only consider a small part of it, considered
to be representative, thus making one more approximation. The scheme of
solution goes as follows:

The energy of a homogeneous electron gas is given by:

Elp) = / p(F)6(P)di + Glol, (2.36)

where ¢ is the electrostatic potential:

e L)
MﬁVM+2/ mm (2.37)

=

and G|p] is the non-local part of the Schrodinger equation. We separate this
functional in two different parts:

G[p] =T [p] + Exc[p]v (238)
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Figure 2.1: Schematic view on the procedure of Kohn-Sham

Initial electron density p

Electrostatic potential ¢
Effective potential V1

Schrédinger equation New electron density p

where the Ts[p] is the kinetic energy of a system of non-interacting electrons
and the E,. is the exchange and the correlation effects (cf. section 2.1.5).
The one-particle Schrodinger equation that is solved is:

(=5 V2 + 97) + pacl (]| $4(7) = Buwa(7), (239)

where p,. is the effective potential representing the non-local energy F,..

This potential is given by
o) = e
Hzc|P] = 3p

The result of these equations is used to calculate the new electron density
as:

(2.40)

N
p(7) = 3 (). (2.41)
1

With this p a new uz. can be calculated and the one-particle Schrodinger
equation can be solved again. This is repeated until convergence.
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2.3.2 Spin Density Functional Theory

In the presence of a magnetic field our scalar potential V() is no longer
enough. Nor is the electron density enough to completely determine the
ground state. As the magnetic field creates a spin-dependent energy, it is
natural that the electron density must be replaced by spin-up and spin-down
densities pT, pl.

The Hamiltonian of the system can be written:

H =T, 4 Vie + Vie + Entag- (2.42)

where Te, Vee and Vie has been defined earlier and the magnetic energy
stemming from the magnetic field B is

N
Eprag = 2up Y B().5, (2.43)

where up = eh/2mecc is the Bohr-magneton and s; is the spin for electron i.
The ground-state energy is then given by

Ey = m£n<\1/|ﬁ|\11> (2.44)
= min min <\II|T6—|—Vee|\IJ>—|—
plpt (w—p' 0t

+ [ dr (V@) + naBP)6 ) + V() ~ uaBo()e' () J2:45)

Let (T,]) represent the spin up and the spin-down states respectively
and let i = 1,...,NT or i = 1,...,]\7l for N' the number of electrons in
spinstate down and analogously for N ", If we assume that the magnetic
field is pointing in the z-direction, E= (0,0, E,) the Kohn-Sham equations
for the spin density functional theory are:

1. The Schrédinger equation for a non-interacting electron is

h'p) (F) = e}, (7) (2.46)

BT = € (7) (247)
1

h? = —§V2 +ogpp(r), o=(1,]) (2.48)

2. The effective potential is

T 1

Vet (F) = ppBa(F) + 6(F) + W (2.49)
L

Vg () = npBa() 4+ o(7) + 2zl o2 ) (2.50)

5p* (7)
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3. The total number of electrons is
N=N'+N'= /pT(F)quL/pl(F)dF (2.51)

Even in the absence of a magnetic field, the spin-polarized Kohn-Sham the-
ory generally provides better solutions.

First, it is only with the supposition that the description of the FE,. is
exact that we get the result of ordinary DFT when B, = 0 in spin DFT.
However, this is not the case, and the E,. [pT , pl} is generally a much better
description of the reality than the ordinary E,.[p] is. The latter energy
is not well adapted to unpaired electrons, such as we have for in open-
shell? molecules. For these cases, the spn-DT is much better to describe the
structure.

Second, different spins can have different densities, which means that
the spin-DFT can include spontaneous magnetization. Hence, the spin-DFT
can also be used on materials which have a rather strong magnetic coupling
inside. Electronic spin susceptibility can be determined and also spin-orbit
coupling and some relativistic effects.

2.3.3 Local Density Approximation

In the Local Density Approximation (LDA) the exchange and the correla-
tion part of the energy are considered to be local'” energies, i.e. they are
considered to be operating as an effective potential. This means that the
electron wave functions are decoupled and that each electron can be solved
separately. In the LDA-approximation, the exchange-correlation energy is
written as

Eulpl = [ pliesclo)dr (2.52)

This is valid only for a slowly varying density and the errors will be of the
order of |Vp|* according to Kohn and Sham 1965 [4].

2.3.4 Exchange Energy

If we approximate that the correlation energy is varying slowly, thus that it
is rather local, we can write the exchange-correlation energy as

Euclp) = Exlp) + [ plectiar (2.53)

9An open-shell molecule does not have an equal number of electrons in spin state up
and down.
10 An operator A is local if

A7, 7Y = A(P)o(7, 7).
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where p is the electron density and e, is the correlation energy (cf. section
2.3.5).

Without any further approximation we can apply the Hartree-Fock ex-
change energy EHF":

1 Lo
EHF], _//Pl( 172 p1(72,71) (2.54)

where p; is defined in equation (2.24) This gives new Kohn-Sham equations
to solve that are much more complicated due to the non-locality. For the
explicit formulas, see Kohn and Sham (1965) [4].

If the exchange energy (cf. 2.1.5) also is assumed to be an effective
potential (and thus local) we can write

Eaolo] = / o P)ea(FdF + p(P)eu )T, (2.55)

(cf. section 2.3.3) This means that the Pauli-principle (which governs the
exchange energy) will in fact make the electron work ”on itself”. This is
not very physical but the effect is not very large and the results are still
respectable. Here, the result from the equation (2.26) can be inserted which
gives

ex[p] = —Cpp'/?, (2.56)

but other possibilities are also available.
There is also a Local Spin Density Approximation (LSDA) for the spin-
DFT (cf. previous two sections) which gives the exchange energy functional:

EESPA' p') = 21/3Cw/ (0% 4 (012 ar (2.57)

where C, = % (%)1/ ® For further details on this and other approximations,

refer to Parr and Yang (1989) [2].

2.3.5 Correlation Energy

In the DFT the correlation energy is rather well accounted for but only
approximately. It is not determined universally but a proposition for the
high density limit is

€ =0.0311lnrs — 0.048 + ry(Alnrs + C), 1> 1, (2.58)

where A and C' are constants, see Parr and Yang (1989) [2].
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2.3.6 Comparison with Hartree-Fock Theory

Hartree-Fock accounts for the exchange energy, but not at all for the cor-
relation energy. It is possible to remedy this by e.g. Moller Plesset (or
many-body) perturbation theory second-order correction to the Hartree-
Fock energy (MP2). However, in order to achieve the same standard on the
total energy as in DF'T this takes about ten times as long time.

The only disadvantage of the DFT theory is that it only calculates the
ground state, not any excited states. This means that it is hard to calculate
bandgaps, which in turn makes the DFT theory bad at determining e.g.
refraction indices. The Hartree-Fock theory calculates the wave function,
instead of just the ground state electron density and it can thus be used to
obtain these kinds of informations. There are variants of the Kohn and Sham
model where this is also included, but they are not yet fully satisfactory.

The great advantage with DFT is that it is simple and can be made to
be an almost complete description, with an energy and an electron density
converging to the values of the physical material. This is not acquired in
Hartree-Fock theory. For ground-state configurations, the results from DFT
are exact and quick. The DFT also allows that a small piece of the crystal
is chosen that can be considered as the whole structure, as well as periodic
boundary conditions, as in Hartree-Fock. This gives a greater freedom and
makes good results easier to obtain.

Conclusion: For most reasonable cases the DFT works about ten times
faster than does Hartree-Fock, making it far more rentable, especially
on large-scale systems.



Chapter 3

Group Theory

As in most fields in physics group theory becomes a important tool to de-
scribe the physics in a efficient way. In this case, with solid state physics,
groups of symmetry operations determined of the crystalline structure are
used to simplify the calculations. We will start with an introduction to
group theory, and then show how this is implemented in solid state physics.
In the end of this chapter we will give a example considering HoO where
group theory will be applied to examine the water molecules properties.

3.1 General

A symmetry operation is a operation which leaves the object unchanged
after operating on it. An example on a symmetry operation is rotation of a
spherical object.

A group is defined as a set of elements A, B, C,... that satisfy the
following requirements:

1. There exists a multiplication operator and the product of
any two elements is in the set; i.e., the set is closed under
group multiplication.

2. The associative law holds; A(BC) = (AB)C.

There is a unit element E such that EA = AE = A.

4. There is in the group an inverse A~! to each element
A such that AA~! = A~'A = E.

©w

If a group contain a number, h, of elements then h is said to be the order
of the group.

3.2 Important Concepts in Group Theory

There are several concepts in group theory that are important for further
comprehension of the subject. This section will give a brief explanation of

21
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the most important ones that will be used later in the applications of group
theory, such as representation of symmetry groups etc.

3.2.1 Isomorphism

Isomorphism describes a algebraic relation between groups. Two groups,
G and H, are said to be isomorphic if there elements have a one-to-one
correspondence, G4 < H 4, which implies that G4aGg = G¢ = HaHp =
He. If two groups do not have this one-to-one correspondence between there
elements they are said to be homomorphic.

3.2.2 Subgroups

A subgroup is, as indicated by the name, a number of elements, g, that
belongs to a group, G, which satisfy the definition of a group themselves.
This means that a product of any two elements in the selected subset, that
forms the subgroup, must also belong to the subset, i.e. gagp € g.

3.2.3 Direct Product Groups

Suppose there exists two subgroups, G and H, to a group, K, that commute,
i.e. GaH4p = HaG4. Then if all the elements in /C can be uniquely described
by a product, G4Hp, then K is said to be a direct product group of G and
‘H, K = G x H. This implies that the only element that is common to both
G and 'H is the identity, which is an operator that leaves what it is acting
on unchanged.

3.2.4 Classes

A Class, C, is a definition of similar group elements which are related through
there conjugate elements. A group element, G4, is said to be conjugate to
an element, Gp, if there is an element, Gy, in the group such that G4 =
Gy GBGI_Vl. This implies that if Gg and G¢ are both conjugate to G4 then
they are also conjugates to each other, i.e.

Ga = Gy GGyl and G4 = Gy GGy =
Gp = Gy GAGN = GGy GeGy Gy = (Gy'Gar)Go(GR Gar) ™!

This is the definition of a class, where all the elements are conjugate to each
other. In the same manner it can be derived that no element can belong to
more than one class, because this imply that those two classes are the same
class. In abelian groups' all the elements are there own classes, because
otherwise would the commutation relation give that G4 = Gp.

! An abelian group is a group where all the elements commute.
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3.3 Representation

A representation of a group defines the operators to the different group
elements. Suppose there is a set of linear operators, I'(G4), in a vector
space L, which correspond to the elements G4 of a group G in the sense
that

[(GA)(Cp) = [(G4CGp), T(E) =1

then this set of operators is said to form a representation of the group G in
the vector space L. L is called the representation space of I'.

Abstract algebra is a very general theory, but in practise it is very com-
mon to represent the group elements with square matrices and chose matrix
multiplication to be the group mulitplicantion operator. These matrices are
written I'(G,,) and are associated with each group element G,,.

A matrix, I'(Gy), is reducible if there exists a basis that makes the
matrix more block diagonalized. If this new basis also is reducible one can
proceed and find a basis where I'(G4) can not be more block diagonalized.

I'(Ga) O 0 0 0
0 To(Ga) O ... O

[(Ga) = 0 0 T3(Ga)... O (3.1)
00 0 ..TaGa)

This representation, formed by T'1(G4), T2(G4),..., Ta(Ga), is called a
irreducible representation of the group element G4 and the set of , the irre-
ducible representations, for all the group elements then forms a irreducible
representation for the group G.

When the symmetry operations represented by matrices are invariant
under bas transformation it is preferable to also characterize the representa-
tions in such a invariant way. This is made through the trace of the matrices,
since these are invariant,

Xa = TrTa(Ga) (3.2)

and x, is called the character of the ath representation. On the basis of
the definition of a character it can be shown that the number of irreducible
representations are equal to the number of classes in the group. It is very
common, when matrix representation is used, that one shows the characters
of the representations in a, so called, character table. In a character table the
columns are labeled by the various classes and the rows by the irreducible
representations, table 3.1.

3.4 Group theory in crystal symmetries

In this section we will take a look at the symmetric groups of crystalline
solids. A crystalline solid is a regular array of identical unit cells such that
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C | 3Cy | 2C3
T (Ga) | 1| 1 | 1
To(Ga) | 1| -1 | 1
T3(Ga) | 2] 0 | -1

Table 3.1: Example of a character table

the crystal is invariant under lattice translations by

n = nja; + ngas + n3ag (3.3)

where ny, no and ng are integers and aj;, as and a3 are the primitive
translation vectors from one lattice point to an other. But this is not the
only operation under which the crystal is invariant. The complete set of
covering operations with one point (the origin) held fix is called the space
group of the crystal. The group of operations which is obtained by setting
all the translations in the space group to zero, is called the point group of
the crystal. There exist 230 different space groups, and for crystals there
exists 32 point groups.

3.5 Schoenflies notation

Symmetry operations is normally noted with the Schoenflies notation, the
list below shows the notation of some standard operations.

E = the identity

C,, =rotation trough 27 /n.

o = reflection in a plane.

op=reflection in the “horizontal” plane, i.e the plane trough the origin per-
pendicular to the axis of highest rotation symmetry

oy=reflection in a “vertical” plane, i.e one passing trough the axis with high-
est symmetry.

oq=reflection in a “diagonal” plane, i.e one containing the symmetry axis
and bisecting the angle between the twofold axes perpendicular to the sym-
metry axis. This is just a special kind of o,.

Sp=improper rotation through 27 /n.

i=inversion.

This basic symmetry operations can be combined to build up different
groups of symmetry, for example the groups C,, contains a o, reflection
plane in addition to the C,, axis.
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3.5.1 Point groups

As we mentioned earlier there exists only 32 different point groups in crys-
talline solids, this is due to restrictions on possible angels of rotation. We
can write a rotation as

Rn = m = mja; + meag + maag (34)

We write an three-dimensional matrix for the rotation operation R which
carries n into m

my Ri1 Ri2 Ri3 ny
mo | = | R21 Roo Ra3 N2 (3.5)
mg R31 R3> R33 ng

If we consider the case when ny=no=0 and ng=1, then m,=R,3 i.e R,3
is an integer. Similarly by putting no=n3=0 and n;=1, etc., we can show
that R,1 and R,9 are also integers. Consequently the trace of R must also be
an integer. If we make a similar transformation to a Cartesian set of basis
vectors the trace remains invariant and must therefor still be an integer. In
the Cartesian basis a rotation of a vector trough an angel ¢ has the trace
14+2cos¢, because the trace have to be an integer the only allowed values on
¢ are 0°, 60°, 90°, 120° and 180°, and hence five-fold axes and axes of order
greater than six are excluded. Similarly for an improper rotation S(¢) the
trace is 2cos¢-1 and must also be an integer, so the angel ¢ takes the same
set of values.

The lattice in eq.3.3 has inversion symmetry, so if it contains an n-fold
axis with n>2 it will also have n vertical mirror planes. These conditions,
when put together, can be shown to limit the possible number of point
groups to 32.

The point groups can be divided in two general categories, the simple
rotation groups and the groups of higher symmetry. The simple rotation
groups are characterized by a symmetry axis with higher symmetry than
the other axes. The groups of higher symmetry have no unique axis of
highest symmetry, but more than one n-fold axis, where n>2.

The simple rotation groups is easily visualized bystereographic projec-
tion. Imagine a sphere centered on the origin and mark on its surface a
arbitrary point and all positions to which this point would move under the
group rotations. This can be presented in two-dimensions by projecting the
resulting points on to a plane.
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Figure 3.1: Crystallographic point groups.

There are 27 different point groups of the simple rotation type, the
stereo-graphic projection of these groups are shown in figure 3.1, together
with the five groups of higher symmetry. The points are mapped on to
the plane in the following manner, every point i the “north “ hemisphere
is projected onto the equatorial plane by straight line projection trough
the “south” pole and marked by a cross, and all the points on the “south”
hemisphere is projected via the “north” pole and marked with a circle.

The point groups of simple rotation are 2

2From M.Tinkham, Group Theory and Quantum Mechanics, McGraw-Hill 1964.
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C,: These are the point groups in which the only symmetry consists of
a single n-fold axis of symmetry, the only cases in crystalline solids are Cj,
CQ,Cg, C4, and C6.

C,v: These groups contains a o, reflection plane in addition to the C,,
axis, this implies the existence of n reflection planes, separated by an angle
m/n around the C,,.

C,.n: These groups contain a o, reflection as well as the C,, axis.

S,: These groups contains an n-fold axis for improper rotation if n is odd,
these groups are identical with C,; and hence they are not considered. If
n is even, they form distinct groups, each of which includes C,,, as a sub-
group. The cases occurring in crystals are thus Sa, S5 and Sg.

D,,: These groups have n twofold axis perpendicular to the principal C,
axis. In Do, therefore, there are three mutually perpendicular twofold axes.

D,,4: These groups contains the element of D,, together with the diagonal
reflection plane o4 bisecting the angels between the twofold axes perpendic-
ular to the principal rotation axis.

D5 These groups contain the elements of D,,, plus the horizontal reflection
plane o5,. Hence, Dy, has twice as many elements as D,,.

The groups of higher symmetry have, as mentioned earlier, have no
unique axis of highest symmetry but they have more than one axis with
at least threefold symmetry. The five groups in this category are T, Ty, T},
O and Oy, they only exists in cubic crystals, in which the fundamental trans-
lational vectors are mutually perpendicular and of equal length. Therefore it
will be convenient to consider all this groups in conjunction with a unit cube.

T: This group consists of the 12 proper rotations which take a regular
tetrahedron into itself. These operations can be visualized if we consider
the tetrahedron in figure 3.2 which is inscribed in a cube. The X, Y and
7 axes are normal to the cubes faces, and the origin is in the center of
the cube The covering operations of the tetrahedron are then seen to be:
E, Cs around each axis and eight Cs’s about the body diagonals of the cube.

T4: The full tetrahedral group T4 contains all the covering operations of a
regular tetrahedron, including reflections.

Tj: This group is obtained by adding the inversion to the group T. Note
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that inversion is not a symmetry operation of the tetrahedron, and are there-
fore not contained in Ty. T}, is a direct product group formed by T and S,.

O: This is the group of proper rotations which take a octahedron, or cube,
into itself.

Oj,: This is the largest of all the point groups with 48 elements. It is
the full symmetry group of a cube or octahedron, including improper rota-
tions and reflections.

Figure 3.2: Tetrahedron inscribed in a cube.

3.5.2 Application of crystal symmetries

The crystallographic point groups are a very handy tool to use in calcula-
tions. The different symmetries of a crystalline solid can be used to simplify
a problem, so that it can be solved without having to make unphysical ap-
proximations.

For applications it can be convenient to tabulate point groups according
to the crystal system to which they belong. For example the SiC polytype
3C-SiC is cubic and has the symmetry point group T}, this group can be
divided into five different classes, the 24 equivalent points, f.4., that a
general point, (x,y,z), can be mapped into by successive application of the
symmetry operators can be presented like this:

fcubic (X7Y7Z) =

E:  (x,y,2)
302: (Xv_Y7_Z) ('Xv'Y7Z) (—X,y;Z) (Y7Z7X)
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8Cs: (Y>'Z>'X) ('Y7 z X) ( ¥z, X) ( )

(2xy) (2xy) (2xy) (2.xy)
60-(1: (X7_Z7_Y) (_Y7_X7Z) ( Z,y,-X ) (X ZaY) (Y7X>Z) (Z7Yax)
6S4: (Y7'X7_Z) ('X7—Z ) ( Y) (Z7 ) (—Z,—y,X) ('Y7X7'Z>

The point groups can also be represented by irreducible representation, the
nomenclature of the irreducible representation of point groups are shown
in table 3.2. Different subscripts are used to give information about the

Dimension of the irreducible representation | 1 213
Symbol AorB|E|T

Table 3.2:

symmetries in the irreducible representation, the table below shows some
subscripts used in the Mulliken’s ® nomenclature.
Tables for the irreducible representation of the point groups can be found

Symmetric with respect to rotation about C, A
Antisymmetry with respect to rotation about C, | B
Symmetric with respect to inversion subscript g
Antisymmetric with respect to inversion subscript u
Symmetric with respect to reflection in oy, superscript ’
Antisymmetric with respect to reflection in oy, superscript ”
Symmetric with respect to reflection in o, subscript 1
Antisymmetric with respect to reflection in o, subscript 2

in most group theory books, we will therefore not provide tables for all the
32 point groups. But we will present, as an example, a table of irreducible
representation for the point group D3, this kind of table is normally called
a character table. The three columns to the right are labeled according to

D3 E 203 30’2
x> 4y 422 A |1 1 1
R, z Ay | 1 1 -1

(zy,yz) (z,y)
<x2—y2,xy>} <Rx,Ry>} B2ty

the number and type of operations that build up each class, 3C’s refers to a
twofold axis perpendicular to the principal threefold axis. In the next col-
umn are the labels of irreducible representation. The other two columns list

3 After the famous chemist Robert S. Mulliken, Nobel Prize in chemistry 1966
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the coordinates, the quadratic forms of the coordinates and the rotations,
Rz, Ry, R;, around the coordinate axes.

Example: We will here give an example, regarding the water molecule
(in order to have a small system where symmetries easily can be visualized),
to show the power of group theory. In the example symmetrical properties
of the water molecule will be used to determine its vibration modes in a
very convenient way.

The water molecule belongs to the group Csg, and have the character
table seen in table 3.3.

Cay E|Cy|oy| o)
x2,y2,2° zZ A 1] 1 1 1
Xy R, A 1] 1 |-1| -1
X7 Ryx By |1]-1]1]|-1
VZ R,,y| B | 1]-1]-1]1
Xoir | 3] 13| 1

Table 3.3: The water molecules symmetry group, Ca,.

oy is here the reflection in the plane of the molecule and o, is the
reflection in the perpendicular plane bisecting the H-O-H bond angel. The
Coq axis is the z-axis that is in the plane of the molecule and bisecting the
H-O-H bond angel. The y-axis is perpendicular to the plane of the molecule
and y is perpendicular to both x and z.

Each atom in the molecule has 3 dimensions of freedom, an effect of this is
that the space of possible displacement is 9 dimensions. This 9-dimensional
(generally called 3N-dimensional) space provides a representation, I'?, of the
water molecules symmetry group Ca,. It can be shown that to each vibration
frequency an irreducible representation, I'*, which contains displacement
modes for the atoms, can be formed. These irreducible representations are
orthogonal and together they form an irreducible representation of Cag,.

From the proper rotation matrix for a cartesian basis and the knowledge
that only the atoms that are unmoved contribute to the character

cos(0) —sin(6) 0
R(#) = | sin(8) cos(@) O
0 0 1

it is seen that the character of proper rotation for the water molecule in this
representation is

X" (R(6)) = Nr(p)(2cos(6) + 1)

where Ny is the number of unmoved atoms. For an improper rotation
(which consists of a proper rotation followed by a reflection in the plane
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perpendicular to the rotational axis) the character becomes
X(5(6)) = Ng(g)(2cos() — 1)

Having the characters for both proper and improper rotations of the
water molecule the next step would be to remove the contributions of the
three modes with zero vibration from rigid body translation and the three
modes from rigid body rotation which also have a zero vibration frequency.
The translation modes can be chosen to be translations along the x, y and
z-axis which results in the characters

Xtrans(R(0)) = (2cos(6) + 1)
Xtrans(S(0)) = (2cos(6) — 1)

For the rigid rotations the proper rotation symmetry operation get the same
character as for translation

Xrot(R(e)) = (2005(0) + 1)’

but for improper rotations the character, which can be obtained with some
vector calculus, becomes negated.

Xrot(5(0)) = —(2cos(0) — 1)

Subtracting this from the total character, x(?), one get the character for
the remaining non-zero vibration modes, Y = X(g) — Xtrans — Xrot- Which
results in the following characters for proper and improper rotations.

Xoib(R(0)) = (NR(g) — 2)(2cos(0) + 1)
Xrot(5(0)) = Ng(g)(2cos(0) — 1)

We can now determine the vibration characters for Cy,s four different
symmetry elements.

E(proper, § = 0, Ng = 3), = xvib(E) =3
Cy(proper, §# = 180, No, = 1), =  xuip(C2) =1
oy (improper, § = 0, N,, = 3), = Xvib(0v) = 3
oy’ (improper, § = 0, N,y = 1), = Xoib(0y,) = 1

With this result together with a inspection of the character table for Ca,
one realize that the vibrational characters give that there exists two non-
degenerate vibrational modes with A; symmetry and one vibrational mode
with B; symmetry. When the A; symmetries conserve all the symmetries
it implies that the water molecule vibrate by either changeing the H-O-H
bond angel or streaching the O-H bonds. For the B; symmetry one notice
that it has minus one characters for Cy and o,’ which gives a vibrational
mode where the two O-H bonds are streached, but in oppostie directions
and the oxygen atom vibrates along the x-axis.
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Semiconductors

4.1 Introduction

Semiconductors are a very important feature in our modern society, and the
demands on performance gets higher and higher. It is therefor very impor-
tant to develop new and more high performing semiconductors. In order
to produce better semiconductors we have to get a deeper understanding of
the atomic structure of the semiconducting material, and how doping affects
the material on the microscopic level. We will in this chapter take a look
at three different semiconducting materials i.e Silicon, Diamond and Silicon
Carbide.

4.2 Semiconductor physics

A semiconductor is a substance in which the conduction band is separated
from the valence band by a band gap, E;. The band gap is defined as the
difference in energy between the lowest point in the conduction band and the
highest point in the valence band. Bonds between atoms in semiconductors
are moderately strong.

At absolute zero temperature, all electrons are bound to their parent
atoms. There are no free electrons left that would enable electric current to
flow. Above absolute zero temperature, lattice vibrations can cause some
covalent bonds to break. A broken bond will result in a free electron, thus
enabling electric current to flow. The missing electron in a broken bond
is represented by a hole, a positive charge carrier. Valence electrons from
neighboring bonds can jump into the place of a missing electron, contributing
to electric conductivity of the semiconductor. This process of free electron
formation is called electron-hole pair generation. As the temperature rises,
the energy of lattice vibrations increases, producing a larger amount of ther-
mally generated electron-hole pairs, thus increasing electrical conductivity
of the semiconductor.
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Moving through the crystal, Figure:4.2, the free electron will after some
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Figure 4.1: Valence band

time jump into another broken bond somewhere in the crystal, canceling the
hole existing there at that precise moment, this process is called electron-
hole recombination.

Semiconductors can be intrinsic or extrinsic, an intrinsic semiconductor
is a pure semiconductor, free carriers are generated exclusively by the process
of electron-hole pair generation, the concentration of free electrons equals
the concentration of holes. An extrinsic semiconductor is an semiconductor
with added impurities to change the electrical properties. A semiconductor
in which concentration of electrons is higher than the concentration of holes
is said to be an n-type semiconductor. The opposite, an semiconductor
with higher concentration of holes than electrons is said to be an p-type
semiconductor.

N-type semiconductors are obtained by doping the semiconductor with
an impurity, in this case called donor, with one more valence electron than
the semiconducting material. The extra electron will be loosely bound to its
parent atom and a very small amount of energy will be sufficient to move it
to the valence band.

P-type semiconductors are obtained by adding acceptor impurities, an ac-
ceptor impurity is an atom with one valence electron less than the semicon-
ducting material. Therefore, such an atom will bind an electron that would
otherwise jump from the valence band into the conduction band, thus pre-
venting the formation of an electron-hole pair.
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4.3 Semiconducting materials

4.3.1 Silicon

Silicon is the material that today is most used as semiconducting material,
it has the advantage of being easy to manufacture, and it is cheap (approx.
27% of earths crust is silicon). Today about 95% of all semiconducting
devices is produced in silicon.

Pure silicon is a hard solid with a crystalline structure the same as that
of the diamond form of carbon (diamond structure), to which silicon shows
many chemical and physical similarities. In order to get good semiconduct-
ing properties highly purified silicon is doped with a doping material such
as phosphor, which gives higher conductivity.

4.3.2 Diamond

Natural diamonds form in the earth’s mantle in regions of high tempera-
ture and high pressure, and are very rare. As new technologies have been
developed for the production of artificial diamonds, the quest for diamonds
has shifted more and more from the mine to the laboratory. An effect of
this is that diamonds can be used in technical application at an reasonable
cost. Diamond has very interesting properties for semiconducting purposes.
If successful doping of diamond can be accomplished routinely, diamond
devices could someday replace silicon semiconductors.

4.3.3 Silicon carbide

The wide-band-gap semiconductor silicon carbide have been a object of in-
tense studies during the last few years. The reason is the unique properties
of silicon carbide, these properties makes it a very interesting material for
high-temperature, high-frequency and high-power applications.

The property that makes it interesting for high-energy applications is
the the large electrical breakdown field strength, which is about 10 times
larger than the electrical breakdown field strength for Si. SiC also has a
high thermal conductivity, it can therefore operate at high temperature.

I major disadvantage with SiC is that it is very difficult to manufacture.
But recent advances in crystal growth has made it possible to produce SiC
of high quality. So SiC might replace Si, in applications where the use of Si
is limited due to its inferior physical properties, in the nearby future.

SiC Polytypes

Silicon carbide has over two hundred different crystal structures, called poly-
types. All the polytypes can be build up by tetrahedrons with Si in the
corners and a C placed in the center of mass of the tetrahedron. Actually
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it does not mater if it is Si at the corners and C in the middle or the other
way around, because of symmetry.

However, the most common way to describe the structures of the different
polytypes is by the use of hexagonal planes. There are three different plane
configurations that can describe all the polytypes and they are here called
A, B and C (see figure). A polytype is then build up by a specific stacking
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Figure 4.2: Stacking sequence of dubble layers of the three most common
SiC polytypes.

sequence of the three plane types. Figure 4.2 shows one way to visualize the
crystal structure with those planes.

Another way is to use the, so called, growth spiral. Starting with the
tetrahedron picture, and saying that a Si atom is in the center of mass
position, there will be a C atom right above this Si atom. The closest
neighbor above the C atom will then consequently be one of the Si atoms
occupying a site in the hexagonal plane above. From one of these new Si
atoms the whole sequence can be done all over again and if the selection of
the Si atom above the C atoms is done in a circular manner this will form a
spiral configuration. The spiral structure representation is shown in figure
4.3.3. If you look along the c-direction all the polytypes would look the
same, since this is the direction in which all layers are stacked. But if you
look at the crystals from the edge, the stacking sequence can easily be seen.
3C-Sic is the only cubic polytype of silicon carbide and it is build up by a
diamond structure with Si in the fcc positions (this is called a Zinc-blend
structure). It can also be described with the hexagonal layers as the stacking
sequence A-B-C-A.

2H-SiC is the simplest of the hexagonal silicon carbide polytypes, it is
built up by a wurtzite structure, this structure can also be described as the
stacking sequence A-B-A.
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Figure 4.3: The spiral structure representation of the three most common
SiC polytupes.

4.4 Properties

The electrical properties of an semiconducting material shows how suitable
the material is as an semiconductor. In silicon carbide the difference in
stacking gives rise to slightly different properties, the properties of four
types of SiC is shown in the table below, together with the properties of
silicon and diamond.

| Property | C (diamond) | Si | 3C-SiC | 2H-SiC | 4H-SiC | 6H-SiC |
Lattice() 5.43 | 4.36 3.076 3.073 3.081
Density(g/cm?) 3.52 2.329 | 3.210 3.211
Melting point(°C) 1420 | 2830 2830
Bandgap(eV) 5.45 1.1 24 3.33 3.26 3.10
Electron mobility(cm?/Vs) 2200 1500 | 1000 1140
Hole mobility(cm?/Vs) 1600 600 | 50 120 850
Breakdown field str.(10°V/cm) | 100 3 20 30
Dielectric constant 5.7 11.8 | 9.7 9.6
Resistivity(Qcm) 10 1000 | 150
Thermal conductivity(W/cmK) | 20.0 1.5 3.2 3.7 4.9
Hardness (kg/mm?) 10000 1000 | 3980 2130

Table 4.1: Basic properties for Si, C and SiC

It is easily seen that the properties of silicon carbide and diamond are
superior those of silicon. The problem is that they are very hard to dope,
but intense research is being done in that area.
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Calculations and Results

5.1 Introduction

The purpose of this study was to examine silicon (Si) and carbon (C, di-
amond) and their behavior caused by different defects, as an initial study
for silicon-carbide. The two kind of defects investigated were, vacancies
and interstitial atoms. Both of these defects are, as mentioned before, of
great interest in various aspects, but since the vacancies appear in a quite
equivalent way in pure materials we concentrated the study to, the more
complex, interstitial defect. To do this we started to investigate hydrogen
terminated clusters' with 86 atoms for both of the materials. This smaller
sized cluster was a crucial starting point which made it possible to do sev-
eral calculations, and get some general indications on the behavior of the
two materials. We then moved on to study the interstitial defect with some
alternative methods. Here we examined how two interstitial atoms, with
different start positions, reacted when they were place in a position that
conserved the symmetry of the cluster. We also relaxed a cluster, with an
interstitial atom, using the supercell technic!. Finally we continued with a
study of a larger cluster consisting of 297 atoms. This last part were made
with the same initial interstitial positions as in the 86 atom cluster. We
chosed the diamond structure to be studied due to its similarities with the
3C SiC structure.

5.2 The AIMPRO Program

The program that was used during this study was Ab initio Modeling Pro-
gram, AIMPRO? , version 5.2 that uses DFT on the basis of Hohenberg-
Kohn and Kohn-Shams discoveries in 1964 and 1965.

!Explained in section 5.2.1
ZDeveloped and used within collaboration between S. Oberg, Lulea, R. Jones, Exeter
and P. Briddon Newecastle
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Calculations are based on density functional theory in either the local
spin density approximation or the generalized gradient approximation. The
program can model systems either in real-space (most appropriate when
looking at molecular systems) or in reciprocal space using a large unit cell
(most appropriate for bulk materials).

The calculations are fully self-consistent and can be either all-electron
or, as is more commonly the case, using norm-conserving pseudopotentials.
The wavefunction is expanded in a basis of Gaussian orbitals containing
arbitrarily high angular momentum functions. Equilibrium structures are
found by an efficient conjugate gradient method incorporating analytic force
evaluation. Furthermore the code also evaluate dynamical properties like
vibrational modes, diffusion barriers and other properties to make contact
with experiments. The code is highly optimized and shows excellent scaling
on parallel platforms.

5.2.1 Boundry conditions

The program is able to deal with two different types of boundary conditions
for modeling crystalline structures. The first one, is the more common, use
of supercells. This means that a part of the crystal, called a supercell, is
buildt and then repeated in all directions with periodical boundary condi-
tions. This gives a good model for pure crystalline materials, but when
defects are studied this is not the optimal way of describing the structure,
since even the defect is repeated periodicly. With AIMPRO it is possi-
ble to perform calculations with supercells consisting of at least 200 atoms.
Because the program uses DFT with the local density approximation the
program also support, unlike other Hartree-Fock based programs, so called
hydrogen terminated clusters. These clusters are like the supercells, a small
part taken from the crystalline structure, but instead of repeating it, hydro-
gen atoms are placed at the boundary to give the boundary atoms a similar
environment to the one they would have if the crystal continued. With these
kind of clusters AIMPRO can treat cluster sizes about 800 atoms. This gives
a much more realistic model for defect crystalline structures and this is also
the kind of boundary condition that was used during this study.

5.3 The Si and C 86-atom Cluster

At first we used a, hydrogen terminated, cluster with 44 Si or C atoms and 42
H atoms, figure 5.1, to investigate the behavior of defects in this structure for
the two materials. With this smaller cluster we calculated the ground state
structure for a cluster with a vacancy and clusters with interstitial atoms.
The interstitial atoms were of the same kind as the atoms which builds up
the cluster. We used three different initial positions of the interstitial atoms
to conclude where an arbitrary interstitial atom are most likely to end up.
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Figure 5.1: Silicon with diamond structure.

5.3.1 Carbon, C

The result from the carbon vacancy calculation showed that with the lack of
an atom the relaxed structure is the same as the initial one, but the neighbors
are a bit pushed away from the empty atom site. This due to the fairly strong
bonds of carbon. The interstitial atoms, on the other hand, did not give that
predicted results. Three different initial positions of the interstitial atoms
were used, figure 5.2. The left of figure 5.2 shows a interstitial atom which

Figure 5.2: The three different start positions of the interstitial atoms, in
the carbon cluster. The red ring marks the interstitial atom.

are place approximately at the same site as another atom. In the middle
an interstitial atom with equal distance to all equivalent neighbors, i.e. no
preferred moving direction, can be seen. The right part shows a interstitial
placed directly on a bond, with equal distance to the two atoms. After the
calculations the clusters had relaxed to the following structures, figure 5.3.
The conclusion of these results were that the interstitial atom strive for a
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Figure 5.3: The three relaxed interstitial clusters.

position at a bond. It seems like the final position can differ a bit, depending
of the atoms start position, but one should keep in mind that the cluster is
very small.

5.3.2 Silicon, Si

The same strategy was used in the case with Si. The relaxed vacancy showed
that the neighboring atoms were pulled together, towards the atom site
with an atom missing, figure 5.4. This is because of the weaker bonds

Figure 5.4: Relaxed silicon cluster with vacancy. It can be seen that the
marked atoms have moved closer together around the free atom site.

and Silicons larger core. For the study of interstitial atoms the same three
positions as in the carbon analysis were, used figure 5.5. The only difference
compared to the carbon clusters was that the interstitial atom that was
placed at the middle of a bond now was placed above two atoms, but with
a smaller distance to them than the other surrounding atoms. This was
done because the position right in the middle of a bond would give a rather
extreme situation due to the properties of silicon. After the relaxation we
got the following results, figure 5.6. The silicon gave a similar result as
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Figure 5.5: The three different start positions of the interstitial atoms, in
the silicon cluster

Figure 5.6: The three relaxed interstitial clusters.

carbon. The difference was that it had a more independent placement of
the interstitials. All three relaxed clusters had a more or less equivalent
position of there interstitial atoms, and there ground state energies were
very similar. Because of the weaker bonds in silicon it is also seen that
the interstitial atoms are located at larger distances from the bonds than in
carbon.

5.4 The Alternative Clusters

We performed two different calculations on interstitial atom defects where
the interstitial atom were placed in a position where the total symmetry
were conserved, see figure 5.7. The cluster used consisted of 72 bulk atoms
(Si or C) and 60 hydrogen atoms. The purpose of this was to see if the
symmetry affected the final position of the interstitial atom. Because of
these clusters larger size they were calculated in a more careful manner so
that a comparison of energy would be possible. We also made a calculation
on an interstitial atom in a supercell, as a complement to our hydrogen
terminated calculations.
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Figure 5.7: The two different start positions of the interstitial atoms in the
132-atom cluster.

5.4.1 Carbon, C

After relaxation we got the following structures from the diamond cluster.
Seen in figure 5.8, the left cluster roughly mainteined its initial structure.

Figure 5.8: The two different end positions of the interstitial atoms in the
132-atom carbon cluster

The right one changed its structure during relaxation and as the figure
shows an atom is drawn towards the middle of a bond. The result of the
calculations also showed that the left interstitial configuration had the lower
ground state energy (in the order of 1.9 eV).

5.4.2 Silicon, Si

The result from the silicon relaxation differed a bit from the result of carbon.
The left structure became a bit perturbed, but had again a quite similar
structure, as in the case with carbon. Unlike the result from the second
carbon cluster the silicon maintained its initial structure. The two structures
had almost the same ground state energy (differs less than 0.4 eV).



CHAPTER 5. CALCULATIONS AND RESULTS 43

Figure 5.9: The two different end positions of the interstitial atoms in the
132-atom silicon cluster

5.4.3 The Supercell

In the supercell, consisting of 64 silicon atoms, we placed the interstitial
atom so that it shared site with one of the original atoms, see right part
of figure 5.10. This is similar to the first interstitial configuration for the
86-atom cluster. The right part of figure 5.10 shows the relaxed structure.

Figure 5.10: The silicon supercell

This structure is rather similar to the initial structure, but the atom par
consisting of the interstitial and its sharing atom has moved to a more
centered position relative the hexagonal pattern.

No further conclusions were drawn at this stage, instead we continued
and saved this to compare with the results from the larger cluster.

5.5 The Si and C 297-atom Cluster

The next step was to use the bigger cluster to create a more physically
correct environment for the interstitial atom and compare the result to our
previous results. A 297-atom cluster was used and in this cluster interstitial
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atoms were made with the same initial positions as in the 86-cluster. The
initial, undefected, cluster consisted of 181 Si or C atoms and 116 H atoms.
Figure 5.11 shows the undisturbed 297-atom cluster.

Figure 5.11: The undefected 297-atom cluster.

5.5.1 Carbon, C

The size of the larger cluster made it relevant to compare the energy of the
different final structures and . The relaxed interstitial clusters, figure 5.12,
were carefully calculated in order make this comparison possible. The three

Figure 5.12: The three relaxed diamond clusters.

final structures had very similar ground state energies. They differed about
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0.5 eV each. The structure with the lowest ground state energy was the
interstitial atom with a initial position with no preferred moving direction,
showed in the middle part of figure 5.12. The structure with second lowest
energy was structure where the start position of the interstitial was on a
bond, right in figure 5.12. The structure with the highest energy was the
one where the initial interstitial atom was sharing a site with another atom,
left in figure 5.12.

5.5.2 Silicon, Si

Figure 5.13 shows the final structures of the large silicon clusters. Even here

Figure 5.13: The three relaxed silicon clusters.

the ground state energies were similar, but a difference was noticed. The
structure with lowest energy was the one where the interstitial atom started
with no preferred direction to move in. The other two were practically equal
(differed less than 0.05 eV) and they differed about 0.5 eV from the lowest
structure.

5.6 Summary

This study showed that the ground state structure of silicon and carbon
differs when a defect, such as an interstitial atom or a vacancy, is present.

When a vacancy is appears in carbon the surrounding atoms are pulled
away from the empty site. The reason to this behavior is most likely the
strong bonds of carbon. The vacancy in silicon acts in the opposite way.
The surrounding atoms pushed towards the vacancy, and this due to there
weaker bonds and larger core.

The interstitial atoms are a more complex defect, and the results were
therefor harder to interpret. Even though some different structures apeared
a over all characteristic behavior could be noticed. From the results of the
large carbon cluster it is observed that, in the two structures with the lowest
energies, the interstitial atom has been pulled towards a bond in the cluster.
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This behavior can also be seen in the 86-atom clusters, as well as in one of
the cluster with 132 atoms.

In silicon we also detected a characteristic behavior of the interstitial
atoms. The result from the calculations of the 298-atom cluster showed that
both the interstitial atom which started in the same site as another atom
and the interstitial who started at a bond relaxed to very similar structures.
The final structure of those two interstitials was a structure where each
interstitial shared a site with an other atom. This relaxed structure could
also be seen in the result of the supercell and in one of the 132-atom clusters.
The 86-atom cluster did not show any signs of this behavior but the reason
for this could be that the cluster was to small to create a physically correct
environment.

How the symmetry affected the calculations on the 132-atom cluster is
hard to tell, but if an interstitial atom is placed not to close to a local
minimum the interstitial atom seams relax into a correct position.
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Summary and Conclusions

In this report we have made structural calculations on silicon and carbon
with Density Functional Theory. We have studied the effects of introduced
interstitials and vacancies on the structure. These kinds of defects are not
yet well understood and accurate experimental data lack.

We have found that DFT is a very powerful tool for making these kinds
of calculations and that realistic results can be obtained with a limited effort,
as well computationally as human. It is rather surprising that such a simple
scheme as that of Kohn-Sham can give so exact results. In short, the idea of
the method is use the electron density as the fundamental variable instead
of the wave-function, as would have been the case otherwise. This reduces
the number of variables drastically. For the ground state of the system, this
representation is exact. Excited states are not possible to calculate with any
good accuracy, but there is a lot of information to extract from the ground
state in itself. For example

Finally, during tihs project we have gained understanding in the struc-
tural calculations on multi-particle systems such as real semiconductors. We
have penetrated the theory that forms the foundations of the Density Func-
tional Theory and we have made practical calculations to see how well the
theory fits with reality. The work has brought us a broad experience, as
well of the diverse subjects, as of the procedures that are required when a
larger project with several people involved shall be executed. A procedure
that will often present itself in the future.

There are only two ways to live your life. One is as though
nothing is a miracle. The other is as though everything is a
miracle.

- Albert Einstein
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Theory of Functionals

A.1 Introduction to Functionals

A functional Fy] is a mapping that takes an element y from a given set Y
and produces a real (or complex) number c.

erMceﬂ%. (A.1)

In this work we deal mainly with Y as a Hilbert space, H, and y as a
function. In the theory of functionals y could also be e.g. a matrix or a
sequence. Here are some examples where y € H:

1. Value of a function y(x) in a point xg
Fylyl = ¢ = y(xo)

2. Derivative of a function y(x) in a point xg

Foly = ¢ = 2 (a0)

3. Integral of a function y(x) over an interval [a, b]
b
Fily] = ¢ 2/ y(x)dx
a

The last type is the one most common in Density Functional Theory.

A.2 Derivatives of Functionals

The element in DFT is the electron density p and the space is the set of
functions with

(oo 0. [ porar= . [ 9o a7 < oo}
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This means that the particle density cannot be negative, that the integral
over all space must equal the total number of electrons and that the electron
density doesn’t vary unphysically. This is a Hilbert space with the inner
product (u|v) = [ u - vdr.

SFp]

The functional derivative 5 is defined by:
F F - F
/ 0F[p] . _ Flpo+p] — Flp] (A.2)
Rr3 0p op 5p=0
where F' is the functional of p. For example the Tomas Fermi energy
Flol = Torlp) = s | PP (0ar (43)
has the derivative:
ET — — —
fIR3 gg[p] dr' = Cy fIR3 dipp5/3d7’ = ng fIR3 p2/3d7‘ = (A.4)

5T
g;[ﬂ] — ngpz/?’

Caution: If the functional contains for example a differential operator
this does not commute with 5‘57). For example:

d OF d?
F[p]:/ (—p)2dF = [”]:2/ — pdF. (A.5)
R3 dx R3 5p R3 $2
This can be expressed generally. Let
Flol = [ oo o) (A.6)
where p(® = 82{” is the partial derivative. Then, if p vanishes on the

boundary of 7,

SF <~ viwi [ OF
5o~ Y <8p<z‘>> (A1)

according to Gelfand and Fomin 1963 [1], p. 42. This formula can be used
to find (A.5) directly.

A.3 Extrema of Functionals

In the same way as in ordinary calculus an extrema of a functional is obtained
when

oF
op(7)
This means that if we make a small variation of the function p this won’t
change the value of the functional. With a constraint

Glp] =0 (A.9)

(A.8)
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on the functional F[p] we can employ the method of Lagrangian multipliers,
i.e. to solve the auxiliary Euler-Lagrange equation:

oF oG
G T (A10)

without the constraint and then impose it to find the multiplier A.
For most of our applications we will be interested in the constraint:

Gl = /133 p(F)dif— N =0, (A.11)

which gives the Euler-Lagrange equation:

OF
op(7)

Even if this condition is satisfied, we are only guaranteed a local max-
imum or minimum. Fortunately, the physical situation often excludes the
possibility of a maximum, and as for locality physical arguments only can
tell us whether the minimum is local or global.

A=0 (A.12)
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